Skip to footer

Tag: Uber Engineering

Creating a Zoo of Atari-Playing Agents to Catalyze the Understanding of Deep Reinforcement Learning

Uber AI Labs releases Atari Model Zoo, an open source repository of both trained Atari Learning Environment agents and tools to better understand them.

POET: Endlessly Generating Increasingly Complex and Diverse Learning Environments and their Solutions through the...

Uber AI Labs introduces the Paired Open-Ended Trailblazer (POET), an algorithm that leverages open-endedness to push the bounds of machine learning.

Women in Data Science at Uber: Moving the World With Data

During an October 2018 meetup, members of our Women in Statistics, Data, Optimization, and Machine Learning (WiSDOM) group presented on their technical work at Uber.
Uber Freight truck driving down freeway

Profiles in Coding: Sylvain Francois, Uber Freight

For Uber's Profiles in Coding series, we interview Uber Freight engineer Sylvain Francois to find out the nature of his daily work and his best tips for coders.

Year in Review: 2018 Highlights from Uber Open Source

Brian Hsieh, Uber's Open Source program lead, reflects on open source accomplishments, project launches, and collaborations in 2018.

The Billion Data Point Challenge: Building a Query Engine for High Cardinality Time Series...

Part of Uber's open source M3 metrics system, our query engine can support real-time, large-scale computation and multiple query languages.

Introducing Makisu: Uber’s Fast, Reliable Docker Image Builder for Apache Mesos and Kubernetes

Uber built Makisu, our open source Docker image builder, to enable the quick, reliable generation of Dockerfiles in Mesos and Kubernetes ecosystems.

Uber Joins the Linux Foundation’s OpenChain Project as a Platinum Member

As part of the OpenChain Project’s governing board, Uber will help create best practices and define standards for open source software compliance.

Engineering Uber’s Next-Gen Payments Platform

During a September 2018 meetup, Uber's Payments Platform team discusses how this technology supports our company's growth through an active-active architecture, exactly-once payment processing, and scalability across businesses.

How to Get a Better GAN (Almost) for Free: Introducing the Metropolis-Hastings GAN

Metropolis-Hastings Generative Adversarial Networks (GANs) leverage the discriminator to pick better samples from the generator after ML model training is done.

Observability at Scale: Building Uber’s Alerting Ecosystem

Uber’s Observability team built a robust, scalable metrics and alerting pipeline to detect, mitigate, and notify engineers of issues as they occur.

Uber Joins the Linux Foundation as a Gold Member

Announced during the Uber Open Summit 2018, we extend our commitment to open source by joining the Linux Foundation as a Gold Member.

NVIDIA: Accelerating Deep Learning with Uber’s Horovod

Horovod, Uber's open source distributed deep learning system, enables NVIDIA to scale model training from one to eight GPUs for their self-driving sensing and perception technologies.

Engineering Sustainability: An Interview with Uber’s Head of Information Technology, Shobhana Ahluwalia

We sat down with Uber's Head of Information Technology to discuss her journey to tech services, what she finds most challenging about her work at Uber, and how her team is setting the company up for success.

Scaling Machine Learning at Uber with Michelangelo

Uber built Michelangelo, our machine learning platform, in 2015. Three years later, we reflect our journey to scaling ML at Uber and lessons learned along the way.

Peloton: Uber’s Unified Resource Scheduler for Diverse Cluster Workloads

Uber developed Peloton to help us balance resource use, elastically share resources, and plan for future capacity needs.

Michelangelo PyML: Introducing Uber’s Platform for Rapid Python ML Model Development

Uber developed Michelangelo PyML to run identical copies of machine learning models locally in both real time experiments and large-scale offline prediction jobs.
Photo of Uber app showing map

Applying Customer Feedback: How NLP & Deep Learning Improve Uber’s Maps

To improve our maps, Uber Engineering analyzes customer support tickets with natural language processing and deep learning to identify and correct inaccurate map data.

Seven Things to Know about Technical Writing at Uber

Technical writer and former intern Shannon Brown explains her work and answers common questions about this important role in Uber’s engineering organization.

Announcing Uber Open Summit 2018: Collaboration at Scale

Keynote speakers include Jim Zemlin, executive director of the Linux Foundation, and Zoubin Ghahramani, chief scientist at Uber AI Labs.

Popular Articles