Skip to footer

Tag: Uber AI

No Coding Required: Training Models with Ludwig, Uber’s Open Source Deep Learning Toolbox

Uber AI's Piero Molino discusses Ludwig's origin story, common use cases, and how others can get started with this powerful deep learning framework built on top of TensorFlow.

Deconstructing Lottery Tickets: Zeros, Signs, and the Supermask

Uber builds upon the Lottery Ticket Hypothesis by proposing explanations behind these mechanisms and deriving a surprising by-product: the Supermask.

Introducing the Uber Research Publications Site

Uber's Chief Scientist announces the launch of the Uber Research Publications Site, a portal for showcasing our contributions to the research community.

Pyro Accepted by the LF Deep Learning Foundation as a Hosted Project

Created by Uber in 2017, Pyro was voted in by the Linux Foundation Deep Learning Technical Board as the latest incubation project to join its foundation.

Uber Open Source: Catching Up with Fritz Obermeyer and Noah Goodman from the Pyro...

We spoke with Fritz Obermeyer and Noah Goodman, Pyro project co-leads, about the potential of open source AI software at Uber and beyond.

First Uber Science Symposium: Discussing the Next Generation of RL, NLP, ConvAI, and DL

The Uber Science Symposium featured talks from members of the broader scientific community about the the latest innovations in RL, NLP, and other fields.

Introducing Ludwig, a Code-Free Deep Learning Toolbox

Uber AI developed Ludwig, a code-free deep learning toolbox, to make deep learning more accessible to non-experts and enable faster model iteration cycles.

Manifold: A Model-Agnostic Visual Debugging Tool for Machine Learning at Uber

Uber built Manifold, a model-agnostic visualization tool for ML performance diagnosis and model debugging, to facilitate a more informed and actionable model iteration process.

Creating a Zoo of Atari-Playing Agents to Catalyze the Understanding of Deep Reinforcement Learning

Uber AI Labs releases Atari Model Zoo, an open source repository of both trained Atari Learning Environment agents and tools to better understand them.

Faster Neural Networks Straight from JPEG

Uber AI Labs introduces a method for making neural networks that process images faster and more accurately by leveraging JPEG representations.

How to Get a Better GAN (Almost) for Free: Introducing the Metropolis-Hastings GAN

Metropolis-Hastings Generative Adversarial Networks (GANs) leverage the discriminator to pick better samples from the generator after ML model training is done.

Announcing the 2019 Uber AI Residency

The Uber AI Residency is a 12-month training program for academics and professionals interested in becoming an AI researcher with Uber AI Labs or Uber ATG.

Popular Articles