Tag: AI

POET: Endlessly Generating Increasingly Complex and Diverse Learning Environments and their Solutions through the...

Uber AI Labs introduces the Paired Open-Ended Trailblazer (POET), an algorithm that leverages open-endedness to push the bounds of machine learning.

Women in Data Science at Uber: Moving the World With Data

During an October 2018 meetup, members of our Women in Statistics, Data, Optimization, and Machine Learning (WiSDOM) group presented on their technical work at Uber.

Horovod Joins the LF Deep Learning Foundation as its Newest Project

Horovod, Uber's distributed training framework, joins the LF Deep Learning Foundation to help advance open source innovation in AI, ML, and deep learning.

Open Source at Uber: Meet Alex Sergeev, Horovod Project Lead

We sat down with Horovod project lead, Alex Sergeev, to discuss his path to open source and what most excites him about the future of Uber's distributed deep learning framework.

Montezuma’s Revenge Solved by Go-Explore, a New Algorithm for Hard-Exploration Problems (Sets Records on...

Uber AI Labs introduces Go-Explore, a new reinforcement learning algorithm for solving a variety of challenging problems, especially in robotics.
Uber AI Chief Scientist Zoubin Ghahramani speaks at Uber Open Summit 2018

Collaboration at Scale: Highlights from Uber Open Summit 2018

Uber hosted its first Open Summit on November 15, inviting the open source community to learn about our open source projects from the engineers who use them every day. Check out highlights from the day, including keynotes from the Linux Foundation's Jim Zemlin and Uber AI's Zoubin Ghahramani.

NVIDIA: Accelerating Deep Learning with Uber’s Horovod

Horovod, Uber's open source distributed deep learning system, enables NVIDIA to scale model training from one to eight GPUs for their self-driving sensing and perception technologies.

Scaling Machine Learning at Uber with Michelangelo

Uber built Michelangelo, our machine learning platform, in 2015. Three years later, we reflect our journey to scaling ML at Uber and lessons learned along the way.

Michelangelo PyML: Introducing Uber’s Platform for Rapid Python ML Model Development

Uber developed Michelangelo PyML to run identical copies of machine learning models locally in both real time experiments and large-scale offline prediction jobs.
Photo of Uber app showing map

Applying Customer Feedback: How NLP & Deep Learning Improve Uber’s Maps

To improve our maps, Uber Engineering analyzes customer support tickets with natural language processing and deep learning to identify and correct inaccurate map data.

Improving Driver Communication through One-Click Chat, Uber’s Smart Reply System

One-click chat, the Uber driver app's smart reply system, leverages machine learning to make in-app messaging between driver-partners and riders more seamless.
Food Discovery with Uber Eats: Recommending for the Marketplace

Food Discovery with Uber Eats: Recommending for the Marketplace

Uber Eats engineers describe how they surface restaurant recommendations in the app using multi-objective optimization to give eaters the most satisfying experience while maintaining the health of the Uber Eats marketplace.

Forecasting at Uber: An Introduction

In this article, we provide a general overview of how our teams leverage forecasting to build better products and maintain the health of the Uber marketplace.

Scaling Uber’s Customer Support Ticket Assistant (COTA) System with Deep Learning

Uber built the next generation of COTA by leveraging deep learning models, thereby scaling the system to provide more accurate customer support ticket predictions.

An Intriguing Failing of Convolutional Neural Networks and the CoordConv Solution

As powerful and widespread as convolutional neural networks are in deep learning, AI Labs’ latest research reveals both an underappreciated failing and a simple fix.

M4 Forecasting Competition: Introducing a New Hybrid ES-RNN Model

With a solid margin, Uber senior data scientist Slawek Smyl won the M4 Competition with his hybrid Exponential Smoothing-Recurrent Neural Networks (ES-RNN) forecasting method.

Measuring the Intrinsic Dimension of Objective Landscapes

Curious about what it is like to traverse the high-dimensional loss landscapes of modern neural networks? Check out Uber AI Labs’ latest research on measuring intrinsic dimension to find out.
Evolution to running

Accelerating Deep Neuroevolution: Train Atari in Hours on a Single Personal Computer

Applying hardware acceleration to deep neuroevolution in what is now an open source project, Uber AI Labs was able to train a neural network to play Atari in just a few hours on a single personal computer, making this type of research accessible to a far greater number of people.
Neuron image

Differentiable Plasticity: A New Method for Learning to Learn

Differentiable Plasticity is a new machine learning method for training neural networks to change their connection weights adaptively even after training is completed, allowing a form of learning inspired by the lifelong plasticity of biological brains.

VINE: An Open Source Interactive Data Visualization Tool for Neuroevolution

Uber AI Labs introduces Visual Inspector for Neuroevolution (VINE), an open source interactive data visualization tool to help neuroevolution researchers better understand this family of algorithms.

Popular Articles