Skip to footer
Home Research Artificial Intelligence / Machine Learning Towards Diverse and Natural Image Descriptions via a Conditional GAN

Towards Diverse and Natural Image Descriptions via a Conditional GAN

0

Abstract

In this paper we introduce the TorontoCity benchmark, which covers the full greater Toronto area (GTA) with 712.5 km² of land, 8439 km of road and around 400,000 buildings. Our benchmark provides different perspectives of the world captured from airplanes, drones and cars driving around the city. Manually labeling such a large scale dataset is infeasible. Instead, we propose to utilize different sources of high-precision maps to create our ground truth. Towards this goal, we develop algorithms that allow us to align all data sources with the maps while requiring minimal human supervision. We have designed a wide variety of tasks including building height estimation (reconstruction), road centerline and curb extraction, building instance segmentation, building contour extraction (reorganization), semantic labeling and scene type classification (recognition). Our pilot study shows that most of these tasks are still difficult for modern convolutional neural networks.

Authors

Bo Dai, Sanja Fidler, Raquel Urtasun, Dahua Lin

Conference

ICCV 2017

Full Paper

‘Towards Diverse and Natural Image Descriptions via a Conditional GAN’ (PDF)

Uber ATG

Comments
Previous article Bayesian inference on random simple graphs with power law degree distributions
Next article Deep Bayesian Active Learning with Image Data
Raquel Urtasun is the Chief Scientist for Uber ATG and the Head of Uber ATG Toronto. She is also a Professor at the University of Toronto, a Canada Research Chair in Machine Learning and Computer Vision and a co-founder of the Vector Institute for AI. She is a recipient of an NSERC EWR Steacie Award, an NVIDIA Pioneers of AI Award, a Ministry of Education and Innovation Early Researcher Award, three Google Faculty Research Awards, an Amazon Faculty Research Award, a Connaught New Researcher Award, a Fallona Family Research Award and two Best Paper Runner up Prize awarded CVPR in 2013 and 2017. She was also named Chatelaine 2018 Woman of the year, and 2018 Toronto’s top influencers by Adweek magazine