Sports Field Localization via Deep Structured Models

    Abstract

    In this work, we propose a novel way of efficiently localizing a soccer field from a single broadcast image of the game. Related work in this area relies on manually annotating a few key frames and extending the localization to similar images, or installing fixed specialized cameras in the stadium from which the layout of the field can be obtained. In contrast, we formulate this problem as a branch and bound inference in a Markov random field where an energy function is defined in terms of field cues such as grass, lines and circles. Moreover, our approach is fully automatic and depends only on single images from the broadcast video of the game. We demonstrate the effectiveness of our method by applying it to various games and obtain promising results. Finally, we posit that our approach can be applied easily to other sports such as hockey and basketball.

    Authors

    Namdar Homayounfar, Sanja Fidler, Raquel Urtasun

    Conference

    CVPR 2017

    Full Paper

    ‘Soccer Field Localization from a Single Image’ (PDF)

    Uber ATG

    Comments
    Previous articleThe surprising creativity of digital evolution: A collection of anecdotes from the evolutionary computation and artificial life research communities
    Next articleGraph Partition Neural Networks for Semi-Supervised Classification
    Namdar Homayounfar
    I'm a research scientist at Uber ATG Toronto and a PhD student at Univeristy of Toronto under the supervision of Prof. Raquel Urtasun. I have broad research interests in deep learning and computer vision. My current focus is in development of deep structured models for the creation of HD maps required for the safe navigation of autonomous vehicles. Previously, I obtained my MSc degree in Statistics at University of Toronto and prior to that my BSc in Probalblity and Statistics from McGill University.
    Raquel Urtasun
    Raquel Urtasun is the Chief Scientist for Uber ATG and the Head of Uber ATG Toronto. She is also a Professor at the University of Toronto, a Canada Research Chair in Machine Learning and Computer Vision and a co-founder of the Vector Institute for AI. She is a recipient of an NSERC EWR Steacie Award, an NVIDIA Pioneers of AI Award, a Ministry of Education and Innovation Early Researcher Award, three Google Faculty Research Awards, an Amazon Faculty Research Award, a Connaught New Researcher Award, a Fallona Family Research Award and two Best Paper Runner up Prize awarded CVPR in 2013 and 2017. She was also named Chatelaine 2018 Woman of the year, and 2018 Toronto’s top influencers by Adweek magazine