Single Image Intrinsic Decomposition Without a Single Intrinsic Image

    Abstract

    We propose an approach for semi-automatic annotation of object instances. While most current methods treat object segmentation as a pixel-labeling problem, we here cast it as a polygon prediction task, mimicking how most current datasets have been annotated. In particular, our approach takes as input an image crop and sequentially produces vertices of the polygon outlining the object. This allows a human annotator to interfere at any time and correct a vertex if needed, producing as accurate segmentation as desired by the annotator. We show that our approach speeds up the annotation process by a factor of 4.7 across all classes in Cityscapes, while achieving 78.4% agreement in IoU with original ground-truth, matching the typical agreement between human annotators. For cars, our speed-up factor is 7.3 for an agreement of 82.2%. We further show generalization capabilities of our approach to unseen datasets.

    Authors

    Wei-Chiu Ma, Hang Chu, Bolei Zhou, Raquel Urtasun, Antonio Torralba

    Conference

    ECCV 2018

    Full Paper

    ‘Single Image Intrinsic Decomposition Without a Single Intrinsic Image’ (PDF)

    Uber ATG

    Comments
    Previous articleBackpropamine: training self-modifying neural networks with differentiable neuromodulated plasticity
    Next articleDeep Continuous Fusion for Multi-Sensor 3D Object Detection
    Wei-Chiu Ma
    Wei-Chiu Ma is a PhD student at MIT advised by Prof. Antonio Torralba. His research interests lie in the intersection of computer vision and machine learning, in particular low-level vision and 3D vision. He also works part-time at Uber ATG Toronto with Prof. Raquel Urtasun to apply his research to self-driving vehicles.
    Raquel Urtasun
    Raquel Urtasun is the Chief Scientist for Uber ATG and the Head of Uber ATG Toronto. She is also a Professor at the University of Toronto, a Canada Research Chair in Machine Learning and Computer Vision and a co-founder of the Vector Institute for AI. She is a recipient of an NSERC EWR Steacie Award, an NVIDIA Pioneers of AI Award, a Ministry of Education and Innovation Early Researcher Award, three Google Faculty Research Awards, an Amazon Faculty Research Award, a Connaught New Researcher Award, a Fallona Family Research Award and two Best Paper Runner up Prize awarded CVPR in 2013 and 2017. She was also named Chatelaine 2018 Woman of the year, and 2018 Toronto’s top influencers by Adweek magazine