Leveraging Constraint Logic Programming for Neural Guided Program Synthesis


    We present a method for solving Programming by Example (PBE) problems that tightly integrates a neural network with a constraint logic programming system called miniKanren. Internally, miniKanren searches for a program that satisfies the recursive constraints imposed by the provided examples. Our Recurrent Neural Network (RNN) model uses these constraints as input to score candidate programs. We show evidence that using our method to guide miniKanren’s search is a promising approach to solving PBE problems.


    Lisa Zhang, Gregory Rosenblatt, Ethan Fetaya, Renjie Liao, William E Byrd, Raquel Urtasun, Richard S. Zemel


    ICLR 2018

    Full Paper

    ‘Leveraging Constraint Logic Programming for Neural Guided Program Synthesis’ (PDF)

    Uber ATG

    Previous articleUnderstanding Short-Horizon Bias in Stochastic Meta-Optimization
    Next articleLikelihood-free inference with emulator networks
    Renjie Liao
    Renjie Liao is a PhD student in Machine Learning Group, Department of Computer Science, University of Toronto, supervised by Prof. Raquel Urtasun and Prof. Richard Zemel. He is also a Research Scientist in Uber Advanced Technology Group Toronto. He is also affiliated with Vector Institute. He received M.Phil. degree from Department of Computer Science and Engineering, Chinese University of Hong Kong, under the supervision of Prof. Jiaya Jia. He got B.Eng. degree from School of Automation Science and Electrical Engineering in Beihang University (former Beijing University of Aeronautics and Astronautics).
    Raquel Urtasun
    Raquel Urtasun is the Chief Scientist for Uber ATG and the Head of Uber ATG Toronto. She is also a Professor at the University of Toronto, a Canada Research Chair in Machine Learning and Computer Vision and a co-founder of the Vector Institute for AI. She is a recipient of an NSERC EWR Steacie Award, an NVIDIA Pioneers of AI Award, a Ministry of Education and Innovation Early Researcher Award, three Google Faculty Research Awards, an Amazon Faculty Research Award, a Connaught New Researcher Award, a Fallona Family Research Award and two Best Paper Runner up Prize awarded CVPR in 2013 and 2017. She was also named Chatelaine 2018 Woman of the year, and 2018 Toronto’s top influencers by Adweek magazine