Skip to footer
Home Research Artificial Intelligence / Machine Learning GeoNet: Geometric Neural Network for Joint Depth and Surface Normal Estimation

GeoNet: Geometric Neural Network for Joint Depth and Surface Normal Estimation



In this paper, we propose Geometric Neural Network (GeoNet) to jointly predict depth and surface normal maps from a single image. Building on top of two-stream CNNs, our GeoNet incorporates geometric relation between depth and surface normal via the new depth-to-normal and normalto-depth networks. Depth-to-normal network exploits the least square solution of surface normal from depth and improves its quality with a residual module. Normal-to-depth network, contrarily, refines the depth map based on the constraints from the surface normal through a kernel regression module, which has no parameter to learn. These two networks enforce the underlying model to efficiently predict depth and surface normal for high consistency and corresponding accuracy. Our experiments on NYU v2 dataset verify that our GeoNet is able to predict geometrically consistent depth and normal maps. It achieves top performance on surface normal estimation and is on par with state-of-theart depth estimation methods.


Xiaojuan Qi, Renjie Liao, Zhengzhe Liu, Raquel Urtasun, Jiaya Jia


CVPR 2018

Full Paper

‘GeoNet: Geometric Neural Network for Joint Depth and Surface Normal Estimation’ (PDF)

Uber ATG

Previous article Matching Adversarial Networks
Next article An Intriguing Failing of Convolutional Neural Networks and the CoordConv Solution
Raquel Urtasun
Raquel Urtasun is the Chief Scientist for Uber ATG and the Head of Uber ATG Toronto. She is also a Professor at the University of Toronto, a Canada Research Chair in Machine Learning and Computer Vision and a co-founder of the Vector Institute for AI. She is a recipient of an NSERC EWR Steacie Award, an NVIDIA Pioneers of AI Award, a Ministry of Education and Innovation Early Researcher Award, three Google Faculty Research Awards, an Amazon Faculty Research Award, a Connaught New Researcher Award, a Fallona Family Research Award and two Best Paper Runner up Prize awarded CVPR in 2013 and 2017. She was also named Chatelaine 2018 Woman of the year, and 2018 Toronto’s top influencers by Adweek magazine