Evolving Multimodal Robot Behavior via Many Stepping Stones with the Combinatorial Multi-Objective Evolutionary Algorithm

    Abstract

    An important challenge in reinforcement learning, including evolutionary robotics, is to solve multimodal problems, where agents have to act in qualitatively different ways depending on the circumstances. Because multimodal problems are often too difficult to solve directly, it is helpful to take advantage of staging, where a difficult task is divided into simpler subtasks that can serve as stepping stones for solving the overall problem. Unfortunately, choosing an effective ordering for these subtasks is difficult, and a poor ordering can reduce the speed and performance of the learning process. Here, we provide a thorough introduction and investigation of the Combinatorial Multi-Objective Evolutionary Algorithm (CMOEA), which avoids ordering subtasks by allowing all combinations of subtasks to be explored simultaneously. We compare CMOEA against two algorithms that can similarly optimize on multiple subtasks simultaneously: NSGA-II and Lexicase Selection. The algorithms are tested on a multimodal robotics problem with six subtasks as well as a maze navigation problem with a hundred subtasks. On these problems, CMOEA either outperforms or is competitive with the controls. Separately, we show that adding a linear combination over all objectives can improve the ability of NSGA-II to solve these multimodal problems. Lastly, we show that, in contrast to NSGA-II and Lexicase Selection, CMOEA can effectively leverage secondary objectives to achieve state-of-the-art results on the robotics task. In general, our experiments suggest that CMOEA is a promising, state-of-the-art algorithm for solving multimodal problems.

    Authors

    Joost Huizinga, Jeff Clune

    Full Paper

    ‘Evolving Multimodal Robot Behavior via Many Stepping Stones with the Combinatorial Multi-Objective Evolutionary Algorithm’ (PDF)

    Uber AI

    Comments
    Previous articleAn Intriguing Failing of Convolutional Neural Networks and the CoordConv Solution
    Next articleLearning to Reweight Examples for Robust Deep Learning
    Joost Huizinga
    Joost Huizinga is a research scientist with Uber AI.
    Jeff Clune
    Jeff Clune is the Loy and Edith Harris Associate Professor in Computer Science at the University of Wyoming and a Senior Research Manager and founding member of Uber AI Labs, which was formed after Uber acquired the startup Geometric Intelligence. Jeff focuses on robotics and training neural networks via deep learning and deep reinforcement learning. He has also researched open questions in evolutionary biology using computational models of evolution, including studying the evolutionary origins of modularity, hierarchy, and evolvability. Prior to becoming a professor, he was a Research Scientist at Cornell University, received a PhD in computer science and an MA in philosophy from Michigan State University, and received a BA in philosophy from the University of Michigan. More about Jeff’s research can be found at JeffClune.com