Skip to footer
Home Research Artificial Intelligence / Machine Learning Evolvability ES: Scalable and Direct Optimization of Evolvability

Evolvability ES: Scalable and Direct Optimization of Evolvability


Designing evolutionary algorithms capable of uncovering highly evolvable representations is an open challenge; such evolvability is important because it accelerates evolution and enables fast adaptation to changing circumstances. This paper introduces evolvability ES, an evolutionary algorithm designed to explicitly and efficiently optimize for evolvability, i.e. the ability to further adapt. The insight is that it is possible to derive a novel objective in the spirit of natural evolution strategies that maximizes the diversity of behaviors exhibited when an individual is subject to random mutations, and that efficiently scales with computation. Experiments in 2-D and 3-D locomotion tasks highlight the potential of evolvability ES to generate solutions with tens of thousands of parameters that can quickly be adapted to solve different tasks and that can productively seed further evolution. We further highlight a connection between evolvability and a recent and popular gradient-based meta-learning algorithm called MAML; results show that evolvability ES can perform competitively with MAML and that it discovers solutions with distinct properties. The conclusion is that evolvability ES opens up novel research directions for studying and exploiting the potential of evolvable representations for deep neural networks.


Alexander Gajewski, Jeff Clune, Kenneth O. Stanley, Joel Lehman


GECCO 2019

Full Paper

‘Evolvability ES: Scalable and Direct Optimization of Evolvability’ (PDF)

Uber AI

Previous article Probabilistic Programming for Birth-Death Models of Evolution Using an Alive Particle Filter with Delayed Sampling
Next article Budgeted Training: Rethinking Deep Neural Network Training Under Resource Constraints
Alex Gajewski is a third-year undergrad at Columbia University studying math and computer science, and was as a summer 2018 intern with Uber AI. He is excited by the potential of emerging technologies like machine learning to change the ways we interact with each other and ourselves.
Jeff Clune is the former Loy and Edith Harris Associate Professor in Computer Science at the University of Wyoming, a Senior Research Manager and founding member of Uber AI Labs, and currently a Research Team Leader at OpenAI. Jeff focuses on robotics and training neural networks via deep learning and deep reinforcement learning. He has also researched open questions in evolutionary biology using computational models of evolution, including studying the evolutionary origins of modularity, hierarchy, and evolvability. Prior to becoming a professor, he was a Research Scientist at Cornell University, received a PhD in computer science and an MA in philosophy from Michigan State University, and received a BA in philosophy from the University of Michigan. More about Jeff’s research can be found at
Before joining Uber AI Labs full time, Ken was an associate professor of computer science at the University of Central Florida (he is currently on leave). He is a leader in neuroevolution (combining neural networks with evolutionary techniques), where he helped invent prominent algorithms such as NEAT, CPPNs, HyperNEAT, and novelty search. His ideas have also reached a broader audience through the recent popular science book, Why Greatness Cannot Be Planned: The Myth of the Objective.
Joel Lehman was previously an assistant professor at the IT University of Copenhagen, and researches neural networks, evolutionary algorithms, and reinforcement learning.