ES Is More Than Just a Traditional Finite-Difference Approximator


    An evolution strategy (ES) variant based on a simplification of a natural evolution strategy recently attracted attention because it performs surprisingly well in challenging deep reinforcement learning domains. It searches for neural network parameters by generating perturbations to the current set of parameters, checking their performance, and moving in the aggregate direction of higher reward. Because it resembles a traditional finite-difference approximation of the reward gradient, it can naturally be confused with one. However, this ES optimizes for a different gradient than just reward: It optimizes for the average reward of the entire population, thereby seeking parameters that are robust to perturbation. This difference can channel ES into distinct areas of the search space relative to gradient descent, and also consequently to networks with distinct properties. This unique robustness-seeking property, and its consequences for optimization, are demonstrated in several domains. They include humanoid locomotion, where networks from policy gradient-based reinforcement learning are significantly less robust to parameter perturbation than ES-based policies solving the same task. While the implications of such robustness and robustness-seeking remain open to further study, this work’s main contribution is to highlight such differences and their potential importance.


    Joel Lehman, Jay Chen, Jeff Clune, Kenneth O. Stanley


    GECCO 2018

    Full Paper

    ‘ES Is More Than Just a Traditional Finite-Difference Approximator’ (PDF)

    Uber AI

    Previous articleAutomated Identification of Northern Leaf Blight-Infected Maize Plants from Field Imagery Using Deep Learning
    Next articleThe Reversible Residual Network: Backpropagation Without Storing Activations
    Joel Lehman
    Joel Lehman was previously an assistant professor at the IT University of Copenhagen, and researches neural networks, evolutionary algorithms, and reinforcement learning.
    Jeff Clune
    Jeff Clune is the Loy and Edith Harris Associate Professor in Computer Science at the University of Wyoming and a Senior Research Manager and founding member of Uber AI Labs, which was formed after Uber acquired the startup Geometric Intelligence. Jeff focuses on robotics and training neural networks via deep learning and deep reinforcement learning. He has also researched open questions in evolutionary biology using computational models of evolution, including studying the evolutionary origins of modularity, hierarchy, and evolvability. Prior to becoming a professor, he was a Research Scientist at Cornell University, received a PhD in computer science and an MA in philosophy from Michigan State University, and received a BA in philosophy from the University of Michigan. More about Jeff’s research can be found at
    Kenneth O. Stanley
    Before joining Uber AI Labs full time, Ken was an associate professor of computer science at the University of Central Florida (he is currently on leave). He is a leader in neuroevolution (combining neural networks with evolutionary techniques), where he helped invent prominent algorithms such as NEAT, CPPNs, HyperNEAT, and novelty search. His ideas have also reached a broader audience through the recent popular science book, Why Greatness Cannot Be Planned: The Myth of the Objective.