Efficient Multiple Instance Metric Learning Using Weakly Supervised Data


    We consider learning a distance metric in a weakly supervised setting where “bags” (or sets) of instances are labeled with “bags” of labels. A general approach is to formulate the problem as a Multiple Instance Learning (MIL) problem where the metric is learned so that the distances between instances inferred to be similar are smaller than the distances between instances inferred to be dissimilar. Classic approaches alternate the optimization over the learned metric and the assignment of similar instances. In this paper, we propose an efficient method that jointly learns the metric and the assignment of instances. In particular, our model is learned by solving an extension of means for MIL problems where instances are assigned to categories depending on annotations provided at bag-level. Our learning algorithm is much faster than existing metric learning methods for MIL problems and obtains state-of-the-art recognition performance in automated image annotation and instance classification for face identification.


    Marc T. Law, Yaoliang Yu, Raquel Urtasun, Richard S. Zemel, Eric P. Xing


    CVPR 2017

    Full Paper

    ‘Efficient Multiple Instance Metric Learning Using Weakly Supervised Data’ (PDF)

    Uber ATG

    Previous articleUber-Text: A Large-Scale Dataset for Optical Character Recognition from Street-Level Imagery
    Next articleEnd-To-End Instance Segmentation With Recurrent Attention
    Raquel Urtasun
    Raquel Urtasun is the Chief Scientist for Uber ATG and the Head of Uber ATG Toronto. She is also a Professor at the University of Toronto, a Canada Research Chair in Machine Learning and Computer Vision and a co-founder of the Vector Institute for AI. She is a recipient of an NSERC EWR Steacie Award, an NVIDIA Pioneers of AI Award, a Ministry of Education and Innovation Early Researcher Award, three Google Faculty Research Awards, an Amazon Faculty Research Award, a Connaught New Researcher Award, a Fallona Family Research Award and two Best Paper Runner up Prize awarded CVPR in 2013 and 2017. She was also named Chatelaine 2018 Woman of the year, and 2018 Toronto’s top influencers by Adweek magazine