Skip to footer

AI

Meta-Graph: Few-Shot Link Prediction Using Meta-Learning

Uber AI introduces Meta-Graph, a new few-shot link prediction framework that facilitates the more accurate training of ML models that quickly adapt to new graph data.

Announcing a New Framework for Designing Optimal Experiments with Pyro

Uber AI released a new framework on top of Pyro that lets experimenters seamlessly automate optimal experimental design (OED) for quicker model iteration.

Enhanced POET: Open-Ended Reinforcement Learning through Unbounded Invention of Learning Challenges and their Solutions

Building upon our existing open-ended learning research, Uber AI released Enhanced POET, a project that incorporates an improved algorithm and allows for more diverse training environments.
Uber ATG self-driving cars

Under the Hood of Uber ATG’s Machine Learning Infrastructure and Versioning Control Platform for...

Managing multiple machine learning models to enable self-driving vehicles is a challenge. Uber ATG developed a model life cycle for quick iterations and a tool for continuous delivery and dependency management.

Building a Backtesting Service to Measure Model Performance at Uber-scale

We built a backtesting service to better assess financial forecast model error rates, facilitating improved forecast performance and decision making.
Uber AI in 2019: Advancing Mobility with Artificial Intelligence

Uber AI in 2019: Advancing Mobility with Artificial Intelligence

In 2019, Uber AI built tools and systems that leverage ML to improve location accuracy and enhance real-time forecasting, among other applications on our platform.

Generative Teaching Networks: Accelerating Neural Architecture Search by Learning to Generate Synthetic Training Data

Developed by Uber AI Labs, Generative Teaching Networks (GTNs) automatically generate training data, learning environments, and curricula to help AI agents rapidly learn.

Controlling Text Generation with Plug and Play Language Models

Plug and Play Language Model, introduced by Uber AI Labs, gives NLP practitioners the flexibility to plug in one or more simple attribute models into a large, unconditional language model.

Food Discovery with Uber Eats: Using Graph Learning to Power Recommendations

By integrating graph learning techniques with our Uber Eats recommendation system, we created a more seamless and individualized user experience for eaters on our platform.

Uber Goes to NeurIPS 2019

Uber is presenting 11 papers at the NeurIPS 2019 conference in Vancouver, Canada, as well as sponsoring workshops including Women in Machine Learning (WiML) and Black in AI.

Announcing the 2020 Uber AI Residency

Uber's 2020 AI Residency will focus on initiatives related to our self-driving car project through Uber Advanced Technology Group (ATG).

Get to Know Uber ATG at ICCV, CoRL, and IROS 2019

Attending ICCV, CoRL, or IROS 2019? Learn about Uber ATG's recent research in artificial intelligence by checking out our workshops, posters, and keynotes.

Evolving Michelangelo Model Representation for Flexibility at Scale

To accommodate additional ML use cases, Uber evolved Michelangelo's application of the Apache Spark MLlib library for greater flexibility and extensibility.
Pedestrian density map

Searchable Ground Truth: Querying Uncommon Scenarios in Self-Driving Car Development

When developing Uber's self driving car systems, engineers found a way to identify edge case scenarios amongst terabytes of sensor data representing real-world situations.
Zoubin Ghahramani

Science at Uber: Improving Transportation with Artificial Intelligence

Uber Chief Scientist Zoubin Ghahramani explains how artificial intelligence went from academia to real-world applications, and how Uber uses it to make transportation better.

Three Approaches to Scaling Machine Learning with Uber Seattle Engineering

At an April 2019 meetup on ML and AI at Uber Seattle, members of our engineering team discussed three different approaches to enhancing our ML ecosystem.
Logan Jeya

Science at Uber: Powering Machine Learning at Uber

Logan Jeya, Product Manager, explains how Uber's machine learning platform, Michelangelo, makes it easy to deploy models that enable data-driven decision making.

Introducing LCA: Loss Change Allocation for Neural Network Training

Uber AI Labs proposes Loss Change Allocation (LCA), a new method that provides a rich window into the neural network training process.

Advancing AI: A Conversation with Jeff Clune, Senior Research Manager at Uber

We sat down with Jeff Clune, Senior Research Manager, to talk about his work in AI, journey to Uber, and Presidential Early Career Achievement in Science and Engineering (PECASE) award.

Science at Uber: Applying Artificial Intelligence at Uber

Zoubin Ghahramani, Head of Uber AI, discusses how we use artificial intelligence techniques to make our platform more efficient for users.

Popular Articles