Skip to footer

Thomas Miconi

Thomas Miconi
Thomas Miconi is a research scientist at Uber AI Labs.

Engineering Blog Articles

Neuron image

Differentiable Plasticity: A New Method for Learning to Learn

Differentiable Plasticity is a new machine learning method for training neural networks to change their connection weights adaptively even after training is completed, allowing a form of learning inspired by the lifelong plasticity of biological brains.

Research Papers

First-Order Preconditioning via Hypergradient Descent

T. Moskovitz, R. Wang, J. Lan, S. Kapoor, T. Miconi, J. Yosinski, A. Rawal
Standard gradient descent methods are susceptible to a range of issues that can impede training, such as high correlations and different scaling in parameter space.These difficulties can be addressed by second-order approaches that apply a pre-conditioning matrix to the gradient to improve convergence. Unfortunately, such algorithms typically struggle to scale to high-dimensional problems, in part because the calculation of specific preconditioners such as the inverse Hessian or Fisher information matrix is highly expensive. We introduce first-order preconditioning (FOP), a fast, scalable approach that generalizes previous work on hypergradient descent (Almeida et al., 1998; Maclaurin et al., 2015; Baydin et al.,2017) to learn a preconditioning matrix that only makes use of first-order information. [...] [PDF]
Conference on Neural Information Processing Systems (NeurlPS), 2019

Estimating Q(s,s’) with Deep Deterministic Dynamics Gradients

A. Edwards, Himanshu Sahni, R. Liu, J. Hung, A. Jain, R. Wang, A. Ecoffet, T. Miconi, C. Isbell, J. Yosinski
In this paper, we introduce a novel form of value function, Q(s,s′), that expresses the utility of transitioning from a state s to a neighboring state s′ and then acting optimally thereafter. In order to derive an optimal policy, we develop a forward dynamics model that learns to make next-state predictions that maximize this value. [...] [PDF]
International Conference on Machine Learning (ICML), 2020

Popular Articles