Skip to footer

Slawek Smyl

Slawek Smyl
3 BLOG ARTICLES 1 RESEARCH PAPERS
Slawek Smyl is a forecasting expert working at Uber. Slawek has ranked highly in international forecasting competitions. For example, he won the M4 Forecasting competition (2018) and the Computational Intelligence in Forecasting International Time Series Competition 2016 using recurrent neural networks. Slawek also built a number of statistical time series algorithms that surpass all published results on M3 time series competition data set using Markov Chain Monte Carlo (R, Stan).

Engineering Blog Articles

Forecasting at Uber: An Introduction

In this article, we provide a general overview of how our teams leverage forecasting to build better products and maintain the health of the Uber marketplace.

M4 Forecasting Competition: Introducing a New Hybrid ES-RNN Model

With a solid margin, Uber senior data scientist Slawek Smyl won the M4 Competition with his hybrid Exponential Smoothing-Recurrent Neural Networks (ES-RNN) forecasting method.

Engineering Extreme Event Forecasting at Uber with Recurrent Neural Networks

Recurrent neural networks equip Uber Engineering's new forecasting model to more accurately predict rider demand during extreme events.

Research Papers

Time-series extreme event forecasting with neural networks at Uber

N. Laptev, J. Yosinski, L. Li, S. Smyl
Accurate time-series forecasting during high variance segments (e.g., holidays), is critical for anomaly detection, optimal resource allocation, budget planning and other related tasks. At Uber accurate prediction for completed trips during special events can lead to a more efficient driver allocation resulting in a decreased wait time for the riders. [PDF]
International Conference on Machine Learning (ICML), 2017

Popular Articles