Skip to footer

Noah Goodman

Noah Goodman
In addition to working at Uber AI Labs, Noah is also an Associate Professor of Psychology, Computer Science, and Linguistics at Stanford University, where he runs the Computation and Cognition Lab.

Engineering Blog Articles

Pyro Accepted by the LF Deep Learning Foundation as a Hosted Project

Created by Uber in 2017, Pyro was voted in by the Linux Foundation Deep Learning Technical Board as the latest incubation project to join its foundation.

Uber AI Labs Open Sources Pyro, a Deep Probabilistic Programming Language

Pyro is an open source probabilistic programming language that unites modern deep learning with Bayesian modeling for a tool-first approach to AI.

Research Papers

Joint Mapping and Calibration via Differentiable Sensor Fusion

J. Chen, F. Obermeyer, V. Lyapunov, L. Gueguen, N. Goodman
We leverage automatic differentiation (AD) and probabilistic programming to develop an end-to-end optimization algorithm for batch triangulation of a large number of unknown objects. Given noisy detections extracted from noisily geo-located street level imagery without depth information, we jointly estimate the number and location of objects of different types, together with parameters for sensor noise characteristics and prior distribution of objects conditioned on side information. [...] [PDF]
CoRR, 2018

Pyro: Deep Universal Probabilistic Programming

E. Bingham, J. Chen, M. Jankowiak, F. Obermeyer, N. Pradhan, T. Karaletsos, R. Singh, P. Szerlip, P. Horsfall, N. Goodman
Pyro is a probabilistic programming language built on Python as a platform for developing advanced probabilistic models in AI research. [...] [PDF]
Journal of Machine Learning Research (JMLR), 2018

Characterizing how Visual Question Answering models scale with the world

E. Bingham, P. Molino, P. Szerlip, F. Obermeyer, N. Goodman
Detecting differences in generalization ability between models for visual question answering tasks has proven to be surprisingly difficult. We propose a new statistic, asymptotic sample complexity, for model comparison, and construct a synthetic data distribution to compare a strong baseline CNN-LSTM model to a structured neural network with powerful inductive biases. [...] [PDF]
ViGIL @ NeurIPS(NeurIPS), 2017

Popular Articles