Skip to footer
Home Authors Posts by Jane Hung

Jane Hung

2 BLOG ARTICLES 3 RESEARCH PAPERS
Jane Hung is a Research Engineer at Uber AI where she works with product teams to develop new and better products by applying machine learning recommendation models. She has worked with teams like Airports, Driver Forecasting, and Driver Engagements.

Engineering Blog Articles

Introducing Carbon Feed for Earners: The One-Stop Info Shop

After launching the Driver App in 2018 to over 2 million earners worldwide, we added content and functionality at a rapid pace. Although this really bolstered the platform, allowing for high-density and high-frequency content, and provided drivers and couriers with

How to Get a Better GAN (Almost) for Free: Introducing the Metropolis-Hastings GAN

0

Generative Adversarial Networks (GANs) have achieved impressive feats in realistic image generation and image repair. Art produced by a GAN has even been sold at auction for over $400,000!

At Uber, GANs have myriad potential applications, including strengthening our

Research Papers

Estimating Q(s,s’) with Deep Deterministic Dynamics Gradients

A. Edwards, Himanshu Sahni, R. Liu, J. Hung, A. Jain, R. Wang, A. Ecoffet, T. Miconi, C. Isbell, J. Yosinski
In this paper, we introduce a novel form of value function, Q(s,s′), that expresses the utility of transitioning from a state s to a neighboring state s′ and then acting optimally thereafter. In order to derive an optimal policy, we develop a forward dynamics model that learns to make next-state predictions that maximize this value. [...] [PDF]
International Conference on Machine Learning (ICML), 2020

Plug and Play Language Models: A Simple Approach to Controlled Text Generation

S. Dathathri, A. Madotto, J. Lan, J. Hung, E. Frank, P. Molino, J. Yosinski, R. Liu
Large transformer-based language models (LMs) trained on huge text corpora have shown unparalleled generation capabilities. However, controlling attributes of the generated language (e.g. switching topic or sentiment) is difficult without modifying the model architecture or fine-tuning on attribute-specific data and entailing the significant cost of retraining. We propose a simple alternative: the Plug and Play Language Model (PPLM) for controllable language generation, which combines a pretrained LM with one or more simple attribute classifiers that guide text generation without any further training of the LM. [PDF]
International Conference on Learning Representations (ICLR), 2020

Metropolis-Hastings Generative Adversarial Networks

R. Turner, J. Hung, Y. Saatci, J. Yosinski
We introduce the Metropolis-Hastings generative adversarial network (MH-GAN), which combines aspects of Markov chain Monte Carlo and GANs. The MH-GAN draws samples from the distribution implicitly defined by a GAN's discriminator-generator pair, as opposed to sampling in a standard GAN which draws samples from the distribution defined by the generator. [...] [PDF]
International Conference on Machine Learning (ICML), 2019