Skip to footer

Jane Hung

Jane Hung
Jane Hung is a research scientist with Uber AI Labs.

Engineering Blog Articles

How to Get a Better GAN (Almost) for Free: Introducing the Metropolis-Hastings GAN

Metropolis-Hastings Generative Adversarial Networks (GANs) leverage the discriminator to pick better samples from the generator after ML model training is done.

Research Papers

Metropolis-Hastings Generative Adversarial Networks

R. Turner, J. Hung, Y. Saatci, J. Yosinski
We introduce the Metropolis-Hastings generative adversarial network (MH-GAN), which combines aspects of Markov chain Monte Carlo and GANs. The MH-GAN draws samples from the distribution implicitly defined by a GAN's discriminator-generator pair, as opposed to sampling in a standard GAN which draws samples from the distribution defined by the generator. [...] [PDF]
International Conference on Machine Learning (ICML), 2019

Popular Articles