Skip to footer

Huaixiu Zheng

Huaixiu Zheng
3 BLOG ARTICLES 3 RESEARCH PAPERS
Huaixiu Zheng is a senior data scientist at Uber, working on projects in the domains of deep learning, reinforcement learning, natural language processing and conversational AI systems.

Engineering Blog Articles

Improving Driver Communication through One-Click Chat, Uber’s Smart Reply System

One-click chat, the Uber driver app's smart reply system, leverages machine learning to make in-app messaging between driver-partners and riders more seamless.

Scaling Uber’s Customer Support Ticket Assistant (COTA) System with Deep Learning

Uber built the next generation of COTA by leveraging deep learning models, thereby scaling the system to provide more accurate customer support ticket predictions.

COTA: Improving Uber Customer Care with NLP & Machine Learning

In this article, Uber Engineering introduces our Customer Obsession Ticket Assistant (COTA), a new tool that puts machine learning and natural language processing models in the service of customer care to help agents deliver improved support experiences.

Research Papers

Flexibly-Structured Model for Task-Oriented Dialogues

L. Shu, P. Molino, M. Namazifar, H. Xu, B. Liu, H. Zheng, G. Tur
This paper proposes a novel end-to-end architecture for task-oriented dialogue systems. It is based on a simple and practical yet very effective sequence-to-sequence approach, where language understanding and state tracking tasks are modeled jointly with a structured copy-augmented sequential decoder and a multi-label decoder for each slot. The policy engine and language generation tasks are modeled jointly following that. [...] [PDF]
2019

COTA: Improving the Speed and Accuracy of Customer Support through Ranking and Deep Networks

P. Molino, H. Zheng, Y.-C. Wang
For a company looking to provide delightful user experiences, it is of paramount importance to take care of any customer issues. This paper proposes COTA, a system to improve speed and reliability of customer support for end users through automated ticket classification and answers selection for support representatives. [...] [PDF]
ACM SIGKDD International Conference on Knowledge Discovery and Data Science (KDD), 2018

Incorporating the Structure of the Belief State in End-to-End Task-Oriented Dialogue Systems

L. Shu, P. Molino, M. Namazifar, B. Liu, H. Xu, H. Zheng, and G. Tur
End-to-end trainable networks try to overcome error propagation, lack of generalization and overall brittleness of traditional modularized task-oriented dialogue system architectures. Most proposed models expand on the sequence-to-sequence architecture. Some of them don’t track belief state, which makes it difficult to interact with ever-changing knowledge bases, while the ones that explicitly track the belief state do it with classifiers. The use of classifiers suffers from the out-of-vocabulary words problem, making these models hard to use in real-world applications with ever-changing knowledge bases. We propose Structured Belief Copy Network (SBCN), a novel end-to-end trainable architecture that allows for interaction with external symbolic knowledge bases and solves the out-of-vocabulary problem at the same time. [...] [PDF]
Conversational Intelligence Challenge at Conference on Neural Information Processing Systems (ConvAI @ NeurIPS), 2018

Popular Articles