Neural networks (NNs) have become prolific over the last decade and now power machine learning across the industry. At Uber, we use NNs for a variety of purposes, including detecting and predicting object motion for self-driving vehicles, responding more …
Hattie Zhou
Engineering Blog Articles
Deconstructing Lottery Tickets: Zeros, Signs, and the Supermask
At Uber, we apply neural networks to fundamentally improve how we understand the movement of people and things in cities. Among other use cases, we employ them to enable faster customer service response with natural language models and lower wait …
Research Papers
LCA: Loss Change Allocation for Neural Network Training
J. Lan, R. Liu, H. Zhou, J. Yosinski
Neural networks enjoy widespread use, but many aspects of their training, representation, and operation are poorly understood. In particular, our view into the training process is limited, with a single scalar loss being the most common viewport into this high-dimensional, dynamic process. We propose a new window into training called Loss Change Allocation (LCA), in which credit for changes to the network loss is conservatively partitioned to the parameters. [...] [PDF]
Conference on Neural Information Processing Systems (NeurIPS), 2019
Neural networks enjoy widespread use, but many aspects of their training, representation, and operation are poorly understood. In particular, our view into the training process is limited, with a single scalar loss being the most common viewport into this high-dimensional, dynamic process. We propose a new window into training called Loss Change Allocation (LCA), in which credit for changes to the network loss is conservatively partitioned to the parameters. [...] [PDF]
Conference on Neural Information Processing Systems (NeurIPS), 2019
Deconstructing Lottery Tickets: Zeros, Signs, and the Supermask
H. Zhou, J. Lan, R. Liu, J. Yosinski
Optical Character Recognition (OCR) approaches have been widely advanced in recent years thanks to the resurgence of deep learning. The state-of-the-art models are mainly trained on the datasets consisting of the constrained scenes. Detecting and recognizing text from the real-world images remains a technical challenge. [...] [PDF]
Conference on Neural Information Processing Systems (NeurIPS), 2019
Optical Character Recognition (OCR) approaches have been widely advanced in recent years thanks to the resurgence of deep learning. The state-of-the-art models are mainly trained on the datasets consisting of the constrained scenes. Detecting and recognizing text from the real-world images remains a technical challenge. [...] [PDF]
Conference on Neural Information Processing Systems (NeurIPS), 2019