Skip to footer

Chris Zhang

Avatar
0 BLOG ARTICLES 2 RESEARCH PAPERS

Research Papers

Graph HyperNetworks for Neural Architecture Search

C. Zhang, M. Ren, R. Urtasun
Neural architecture search (NAS) automatically finds the best task-specific neural network topology, outperforming many manual architecture designs. However, it can be prohibitively expensive as the search requires training thousands of different networks, while each can last for hours. In this work, we propose the Graph HyperNetwork (GHN) to amortize the search cost: given an architecture, it directly generates the weights by running inference on a graph neural network. [...] [PDF]
Meta Learning workshop @ Neural Information Processing Systems (NeurIPS), 2018

Efficient Convolutions for Real-Time Semantic Segmentation of 3D Point Clouds

C. Zhang, W. Luo, R. Urtasun
We propose an approach for semi-automatic annotation of object instances. While most current methods treat object segmentation as a pixel-labeling problem, we here cast it as a polygon prediction task, mimicking how most current datasets have been annotated. [...] [PDF]
International Conference on 3D Vision (3DV), 2018

Popular Articles