Skip to footer

Bing Liu

Avatar
0 BLOG ARTICLES 1 RESEARCH PAPERS

Research Papers

Incorporating the Structure of the Belief State in End-to-End Task-Oriented Dialogue Systems

L. Shu, P. Molino, M. Namazifar, B. Liu, H. Xu, H. Zheng, and G. Tur
End-to-end trainable networks try to overcome error propagation, lack of generalization and overall brittleness of traditional modularized task-oriented dialogue system architectures. Most proposed models expand on the sequence-to-sequence architecture. Some of them don’t track belief state, which makes it difficult to interact with ever-changing knowledge bases, while the ones that explicitly track the belief state do it with classifiers. The use of classifiers suffers from the out-of-vocabulary words problem, making these models hard to use in real-world applications with ever-changing knowledge bases. We propose Structured Belief Copy Network (SBCN), a novel end-to-end trainable architecture that allows for interaction with external symbolic knowledge bases and solves the out-of-vocabulary problem at the same time. [...] [PDF]
Conversational Intelligence Challenge at Conference on Neural Information Processing Systems (ConvAI @ NeurIPS), 2018

Popular Articles