Skip to footer

Bin Yang

Avatar
1 BLOG ARTICLES 9 RESEARCH PAPERS
Bin Yang is a research scientist at Uber ATG Toronto. He's also a PhD student at University of Toronto, supervised by Prof. Raquel Urtasun. His research interest lies in computer vision and deep learning, with a focus on 3D perception in autonomous driving scenario.

Engineering Blog Articles

SBNet: Leveraging Activation Block Sparsity for Speeding up Convolutional Neural Networks

Uber ATG Toronto developed Sparse Blocks Network (SBNet), an open source algorithm for TensorFlow, to speed up inference of our 3D vehicle detection systems while lowering computational costs.

Research Papers

End-to-end Interpretable Neural Motion Planner

W. Zeng, W. Luo, S. Suo, A. Sadat, B. Yang, S. Casas, R. Urtasun
In this paper, we propose a neural motion planner for learning to drive autonomously in complex urban scenarios that include traffic-light handling, yielding, and interactions with multiple road-users. Towards this goal, we design a holistic model that takes as input raw LIDAR data and an HD map and produces interpretable intermediate representations in the form of 3D detections and their future trajectories, as well as a cost volume defining the goodness of each position that the self-driving car can take within the planning horizon. [...] [PDF]
Conference on Computer Vision and Pattern Recognition (CVPR), 2019

Multi-Task Multi-Sensor Fusion for 3D Object Detection

M. Liang, B. Yang, Y. Chen, R. Hu, R. Urtasun
In this paper we propose to exploit multiple related tasks for accurate multi-sensor 3D object detection. Towards this goal we present an end-to-end learnable architecture that reasons about 2D and 3D object detection as well as ground estimation and depth completion. [...] [PDF]
Conference on Computer Vision and Pattern Recognition (CVPR), 2019

HDNET: Exploiting HD Maps for 3D Object Detection

B. Yang, M. Liang, R. Urtasun
In this paper we show that High-Definition (HD) maps provide strong priors that can boost the performance and robustness of modern 3D object detectors. Towards this goal, we design a single stage detector that extracts geometric and semantic features from the HD maps. [...] [PDF]
Conference on Robot Learning (CORL), 2018

Deep Continuous Fusion for Multi-Sensor 3D Object Detection

M. Liang, B. Yang, S. WangR. Urtasun
In this paper, we propose a novel 3D object detector that can exploit both LIDAR as well as cameras to perform very accurate localization. Towards this goal, we design an end-to-end learnable architecture that exploits continuous convolutions to fuse image and LIDAR feature maps at different levels of resolution. [...] [PDF]
European Conference on Computer Vision (ECCV), 2018

Learning to Reweight Examples for Robust Deep Learning

M. Ren, W. Zeng, B. Yang, R. Urtasun
Deep neural networks have been shown to be very powerful modeling tools for many supervised learning tasks involving complex input patterns. However, they can also easily overfit to training set biases and label noises. [...] [PDF]
International Conference on Machine Learning ( ICML), 2018

SBNet: Sparse Block’s Network for Fast Inference

M. Ren, A. Pokrovsky, B. Yang, R. Urtasun
Conventional deep convolutional neural networks (CNNs) apply convolution operators uniformly in space across all feature maps for hundreds of layers - this incurs a high computational cost for real-time applications. For many problems such as object detection and semantic segmentation, we are able to obtain a low-cost computation mask, either from a priori problem knowledge, or from a low-resolution segmentation network. [...] [PDF]
Conference on Computer Vision and Pattern Recognition (CVPR), 2018

Fast and Furious: Real Time End-to-End 3D Detection, Tracking and Motion Forecasting with a...

W. Luo, B. Yang, R. Urtasun
In this paper we propose a novel deep neural network that is able to jointly reason about 3D detection, tracking and motion forecasting given data captured by a 3D sensor. By jointly reasoning about these tasks, our holistic approach is more robust to occlusion as well as sparse data at range. [...] [PDF]
Conference on Computer Vision and Pattern Recognition (CVPR), 2018

PIXOR: Real-time 3D Object Detection from Point Clouds

B. Yang, W. Luo, R. Urtasun
We address the problem of real-time 3D object detection from point clouds in the context of autonomous driving. [...] [PDF]
Conference on Computer Vision and Pattern Recognition (CVPR), 2018

TorontoCity: Seeing the World With a Million Eyes

S. Wang; M. Bai; G. Mattyus; H. Chu; W. Luo; B. Yang; J. Liang; J. Cheverie; R. Urtasun; D. Lin.
Despite the substantial progress in recent years, the image captioning techniques are still far from being perfect. Sentences produced by existing methods, e.g. those based on RNNs, are often overly rigid and lacking in variability. [...] [PDF]
International Conference on Computer Vision (ICCV), 2017

Popular Articles