Skip to footer

Aditya Rawal

Aditya Rawal
1 BLOG ARTICLES 1 RESEARCH PAPERS
Aditya Rawal is a research scientist at Uber AI Labs. His interests lies at the convergence of two research fields - neuroevolution and deep learning. His belief is that evolutionary search can replace human ingenuity in creating next generation of deep networks. Previously, Aditya received his MS/PhD in Computer Science from University of Texas at Austin, advised by Prof. Risto Miikkulainen. During his PhD, he developed neuroevolution algorithms to evolve recurrent architectures for sequence-prediction problems and construct multi-agent systems that cooperate, compete and communicate.

Engineering Blog Articles

Generative Teaching Networks: Accelerating Neural Architecture Search by Learning to Generate Synthetic Training Data

Developed by Uber AI Labs, Generative Teaching Networks (GTNs) automatically generate training data, learning environments, and curricula to help AI agents rapidly learn.

Research Papers

Backpropamine: training self-modifying neural networks with differentiable neuromodulated plasticity

T. Miconi, A. Rawal, J. Clune, K. Stanley
A grand challenge in reinforcement learning is intelligent exploration, especially when rewards are sparse or deceptive. Two Atari games serve as benchmarks for such hard-exploration domains: Montezuma's Revenge and Pitfall. On both games, current RL algorithms perform poorly, even those with intrinsic motivation, which is the dominant method to improve performance on hard-exploration domains. To address this shortfall, we introduce a new algorithm called Go-Explore. [...] [PDF]
International Conference on Learning Representations (ICLR), 2019

Popular Articles